Lecture 10 provides a complete hands-on guide to Data Mining implementation using Python with Pandas, NumPy, Matplotlib, Scikit-learn, and MLxtend. Includes preprocessing, classification, clustering, association rule mining, examples, diagrams, code, and evaluation techniques.
Python has become the most widely used language in Data Mining and Machine Learning. Its simplicity, flexibility, and huge library ecosystem make it ideal for students, researchers, data scientists, and AI engineers.
This lecture transforms the theoretical knowledge from previous lectures into practical, real-world Python implementation.
Python will be used to:
- Load datasets
- Clean and preprocess data
- Create training/testing sets
- Build models (classification & clustering)
- Run association rule mining
- Visualize results
- Evaluate performance
By the end of this lecture, you will be able to build full data mining pipelines using Python.
Introduction to Python for Data Mining
Why Python Is Used in Data Mining
Python dominates the data industry due to:
- Easy syntax
- Huge community support
- Powerful libraries
- Industry adoption (Google, Meta, Netflix, OpenAI)
- Fast model development
Key Libraries Overview
Here are the main Python libraries used in Data Mining:
| Library | Purpose |
|---|---|
| Pandas | Data manipulation |
| NumPy | Numerical computing |
| Matplotlib / Seaborn | Visualization |
| Scikit-learn | ML algorithms |
| MLxtend | Association rules |
| SciPy | Statistics |
| NetworkX | Graph mining |
| NLTK / SpaCy | Text mining |
Installing the Required Tools
Python, Pip & Anaconda
Beginners can download Anaconda, which includes:
- Python
- Jupyter Notebook
- Data science libraries
Installing Libraries
Run:
pip install pandas numpy matplotlib seaborn scikit-learn mlxtend
Loading and Understanding Data
Using Pandas DataFrames
Dataset example: students.csv
import pandas as pd
df = pd.read_csv("students.csv")
print(df.head())
Reading CSV, Excel, SQL
df = pd.read_excel("file.xlsx")
df = pd.read_sql("SELECT * FROM students", connection)
Data Preprocessing in Python
Preprocessing prepares raw data for analysis.
Handling Missing Values
Check missing:
df.isnull().sum()
Fill missing values:
df['Age'] = df['Age'].fillna(df['Age'].mean())
Encoding Categorical Data
Convert categories → numbers:
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['Gender'] = le.fit_transform(df['Gender'])
Scaling & Normalization
Used for KNN, clustering, SVM.
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(df[['Age', 'Marks']])
Feature Selection
corr = df.corr()
print(corr['Target'])
Exploratory Data Analysis (EDA)
Statistical Summary
df.describe()
Data Visualization
Histogram:
df['Age'].hist()
Correlation heatmap:
import seaborn as sns
sns.heatmap(df.corr())
Implementing Classification Algorithms
We train models using Scikit-learn.
Split dataset:
from sklearn.model_selection import train_test_split
X = df.drop('Target', axis=1)
y = df['Target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
Decision Tree Classifier
from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier()
dt.fit(X_train, y_train)
pred = dt.predict(X_test)
Naive Bayes Classifier
from sklearn.naive_bayes import GaussianNB
nb = GaussianNB()
nb.fit(X_train, y_train)
pred = nb.predict(X_test)
Logistic Regression
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(X_train, y_train)
KNN Classifier
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
Implementing Clustering Algorithms
K-Means Clustering
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3)
kmeans.fit(X_scaled)
labels = kmeans.labels_
Hierarchical Clustering
from sklearn.cluster import AgglomerativeClustering
hc = AgglomerativeClustering(n_clusters=3)
labels = hc.fit_predict(X_scaled)
Association Rule Mining
We use MLxtend.
Convert data into basket format (one-hot encoded).
from mlxtend.frequent_patterns import apriori, association_rules
frequent_items = apriori(df, min_support=0.2, use_colnames=True)
rules = association_rules(frequent_items, metric="lift", min_threshold=1)
print(rules)
Model Evaluation
Confusion Matrix
from sklearn.metrics import confusion_matrix
confusion_matrix(y_test, pred)
Accuracy, Precision, Recall, F1
from sklearn.metrics import accuracy_score, classification_report
print(accuracy_score(y_test, pred))
print(classification_report(y_test, pred))
Silhouette Score for Clustering
from sklearn.metrics import silhouette_score
silhouette_score(X_scaled, labels)
Final Python Project: Complete Data Mining Pipeline
A complete pipeline includes:
- Loading data
- Cleaning & preprocessing
- Encoding & scaling
- Splitting
- Model training
- Evaluation
- Saving model
Complete Pipeline Code
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
# Load data
df = pd.read_csv("data.csv")
# Preprocessing
df.fillna(df.mean(), inplace=True)
# Split
X = df.drop('Target', axis=1)
y = df['Target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
# Scaling
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Model
model = DecisionTreeClassifier()
model.fit(X_train, y_train)
# Evaluation
pred = model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, pred))
Common Mistakes & Solutions
Using incomplete data
Not scaling before clustering
Using wrong algorithms for categorical data
Forgetting train/test split
Misinterpreting evaluation metrics
Next. Lecture 11 – Ethical Legal and Privacy Issues in Data Mining
Summary
Lecture 10 provided a complete introduction to implementing Data Mining using Python. You learned how to perform preprocessing, EDA, classification, clustering, association rules, feature engineering, and model evaluation. You also explored complete Python pipelines used in real-world industry applications.
People also ask:
Pandas and Scikit-learn.
Yes, it is essential for numerical operations and matrix manipulation.
Yes. Python is the standard in data science & machine learning.
Jupyter Notebook or VS Code.
With Spark and Dask, yes.




